

$$\vec{\mathbf{D}} = \mathbf{\nabla} \cdot \vec{\mathbf{u}} \Leftrightarrow \vec{\mathbf{\omega}}_{i}$$

$$\nabla \cdot \vec{\mathbf{u}} \Leftrightarrow \sum_{j=1}^{3} \frac{\partial u_{j}}{\partial x_{j}} \Leftrightarrow \frac{\partial u_{j}}{\partial x_{j}}$$

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

$$\delta_{ii} = \sum_{i=1}^{3} \delta_{ii} = \delta_{11} + \delta_{22} + \delta_{33} = 3$$

$$\varepsilon_{ijk} = \begin{cases} \pm 1 & \text{if } i \neq j \neq k \quad (\varepsilon_{123} = +1) \\ 0 & \text{otherwise} \end{cases}$$

$$\varepsilon_{mij}\varepsilon_{mrs} = \delta_{ir}\delta_{js} - \delta_{is}\delta_{jr}$$

Tensor Notation

$$(\vec{a} \cdot \nabla)\vec{b} \Leftrightarrow \sum_{j=1}^{3} a_j \frac{\partial b_i}{\partial x_j} \Leftrightarrow a_j \frac{\partial b_i}{\partial x_j}$$
 $\vec{u} \times \vec{\omega} \Leftrightarrow \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{ijk} u_j \omega_k \Leftrightarrow \varepsilon_{ijk} u_j \omega_k$
 $\vec{v} \times \vec{u} \Leftrightarrow \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{ijk} \frac{\partial u_k}{\partial x_j} \Leftrightarrow \varepsilon_{ijk} \frac{\partial u_k}{\partial x_j}$

Physical Significance2. Twice the average angular velocity
consider an infinitesimal circle around a point in space: \overrightarrow{OS} average angular velocity $= \frac{1}{2\pi r} \oint \frac{\vec{u} \cdot d\vec{s}}{r}$ $= \frac{1}{2\pi r} \iint_A (\nabla \times \vec{u}) \cdot d\vec{A} = \frac{1}{2\pi r} \iint_A \vec{\omega} \cdot d\vec{A}$ As $r \rightarrow 0$, $= \frac{1}{2\pi r} (\omega_n \pi r^2) = \frac{1}{2} \omega_n$ The average angular velocity around an infinitesimal circle =half the vorticity component in the direction of the area enclosed by the circle.

3. Vorticity and Vortex Stretching
Physical Significance
1. related to the rotational tensor
Consider the relative velocity of two nearby fluid particles separated by a distance $\delta \vec{x}$:
$\delta u_i = \delta x_j \frac{\partial u_i}{\partial x_j} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \delta x_j + \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) \delta x_j$
$\delta u_i = S_{ij} \delta x_j + \Omega_{ij} \delta x_j$
S_{ij} = strain tensor (angular deformation; straining)
$\Omega_{ij} = $ rotational tensor
$\omega_i = -\varepsilon_{ijk}\Omega_{jk}$; $\Omega_{ij} = -\frac{1}{2}\varepsilon_{ijk}\omega_k$
5

Mathematical DescriptionIncompressible Navier-Stokes flows of Newtonian fluid with constant properties:
$$\nabla \cdot \vec{u} = 0$$
 $\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = -\frac{1}{\rho}\nabla p + \vec{g} + \frac{\mu}{\rho}\nabla^2 \vec{u}$ $\nabla \times \left\{ \frac{\partial \vec{u}}{\partial t} + \nabla(\frac{1}{2}\vec{u} \cdot \vec{u}) - \frac{1}{2}\vec{u} \times \vec{\omega} = -\frac{1}{\rho}\nabla p + \vec{g} + \frac{\mu}{\rho}\nabla^2 \vec{u} \right\}$ $\frac{\partial \vec{\omega}}{\partial t} + (\vec{u} \cdot \nabla)\vec{\omega} - (\vec{\omega} \cdot \nabla)\vec{u} = -\nabla \frac{1}{\rho} \times \nabla p + \nabla \times \vec{g} + \frac{\mu}{\rho}\nabla^2 \vec{\omega}$ $\frac{D\vec{\omega}}{Dt} = \text{Lagrangian time change rate of vorticity}$

• Will $\eta \to 0$ as $\nu \to 0$?

	example 3. Vorticity and Vortex Stretching
	Townsend, Proc. Roy. Soc. A208, 534 (1951)
	$\vec{u} = \vec{U} + \vec{v} = (\alpha x, \beta y, -(\alpha + \beta)z) + \vec{v}$
	$\nabla \cdot \vec{U} = 0$ (incompressible) and $\nabla \times \vec{U} = 0$ (irrotational)
	$\vec{\omega} = \nabla \times \vec{u} = \nabla \times \vec{v}$
	Consider only special cases when $ \vec{v} \ll \vec{U} $:
	convection : $(\vec{u} \cdot \nabla)\vec{\omega} \approx (\vec{U} \cdot \nabla)\vec{\omega}$
3	stretching : $(\vec{\omega} \cdot \nabla)\vec{u} \approx (\vec{\omega} \cdot \nabla)\vec{U}$
	$\frac{D\vec{\omega}}{Dt} = (\vec{\omega} \cdot \nabla)\vec{u} + \nu\nabla^2\vec{\omega}$
	$\frac{\partial \vec{\omega}}{\partial t} + (\vec{U} \cdot \nabla) \vec{\omega} = (\vec{\omega} \cdot \nabla) \vec{U} + v \nabla^2 \vec{\omega} \text{(linear)}$

