

§ limit
$\lim_{x \to x_0} f(x) = L \text{ if given } \varepsilon > 0, \ \exists \delta > 0 \text{ such that } \left f(x) - L \right < \varepsilon$
whenever $0 < x - x_0 < \delta$
e.g. $\lim_{x\to 2} x^2 = 4$ (take $\delta = \varepsilon/(5+\varepsilon)$)
<i>e.g.</i> $\lim_{x\to 0} \frac{ x }{x}$ does not exist.
§ Continuity
$f(x)$ is said to be continuous at x_0 if $\lim_{x\to 0} f(x) = f(x_0)$

e.g. $\lim_{x\to 2} x^2 = 4$ (take $\delta = \varepsilon/(5+\varepsilon)$)
for $ x-2 < \delta = \varepsilon / (5+\varepsilon)$: $2 - \frac{\varepsilon}{5+\varepsilon} < x < 2 + \frac{\varepsilon}{5+\varepsilon}$
$-\frac{4\varepsilon}{5+\varepsilon} + \frac{\varepsilon^2}{\left(5+\varepsilon\right)^2} < x^2 - 4 < \frac{4\varepsilon}{5+\varepsilon} + \frac{\varepsilon^2}{\left(5+\varepsilon\right)^2}$
$RHS = \frac{4\varepsilon}{5+\varepsilon} + \frac{\varepsilon^2}{\left(5+\varepsilon\right)^2} = \frac{20\varepsilon + 5\varepsilon^2}{\left(5+\varepsilon\right)^2} = \varepsilon \cdot \frac{5}{\left(5+\varepsilon\right)} \cdot \frac{4+\varepsilon}{\left(5+\varepsilon\right)} < \varepsilon$
$LHS = -\frac{4\varepsilon}{5+\varepsilon} + \frac{\varepsilon^2}{(5+\varepsilon)^2} = -\frac{20\varepsilon + 3\varepsilon^2}{(5+\varepsilon)^2} > -\frac{20\varepsilon + 5\varepsilon^2}{(5+\varepsilon)^2} = -\varepsilon \cdot \frac{5}{(5+\varepsilon)} \cdot \frac{4+\varepsilon}{(5+\varepsilon)} > -\varepsilon$
$-\varepsilon < x^2 - 4 < \varepsilon \Rightarrow x^2 - 4 < \varepsilon$

	A CONTRACTOR
§ Differentiability	
f(x) is said to be differ	rentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists.
<i>e.g.</i> $f(x) = x $ is different effective of $f(x) = x $ is different effective of x and x and y are the formula of x and y and y are the formula of x and y and y are the formula of x and y and y are the formula of x an	rentiable everywhere except at $x = 0$
Differentiability	implies continuity.
§ Riemann integral	$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(z_{i}) \Delta x_{i}$
	where $a \le x_0 \le x_1 \le \dots \le x_n \le b$
	$\Delta x_{i} = x_{i} - x_{i-1}, \ z_{i} \in [x_{i-1}, x_{i}]$

$$\left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)^{4}$$

$$\left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)^{0} f(x, y) = 1 \cdot f(x, y) = f(x, y)$$

$$\left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)^{1} f(x, y) = dx\frac{\partial f}{\partial x} + dy\frac{\partial f}{\partial y}$$

$$\left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)^{2} f(x, y) = \left(dx^{2}\frac{\partial^{2}}{\partial x^{2}} + 2dxdy\frac{\partial}{\partial x}\frac{\partial}{\partial y} + dy^{2}\frac{\partial^{2}}{\partial y^{2}}\right) f(x, y)$$

$$= dx^{2}\frac{\partial^{2} f}{\partial x^{2}} + 2dxdy\frac{\partial^{2} f}{\partial x\partial y} + dy^{2}\frac{\partial^{2} f}{\partial y^{2}}$$

	ALL LAND
example: compute the series	$P_n = \frac{1}{3^n}$ with single-precision real numbers
Method 1 P(0)=1 DO n=1,100 P(n)=1./3.*P(n-1 END DO	$\begin{array}{c} \mbox{Method 2} \\ P(0)=1 \\ P(1)=1./3. \\ \mbox{DO n=2,100} \\ P(n)=10./3.*P(n-1)-P(n-2) \\ \mbox{END DO} \end{array}$
Method 1: $fl(P_n)$ Method 2: $fl(P_n)$	$f_{n-1} = f_{n-1} \left(f_{n-1} \left(\frac{1}{3} \right) * f_{n-1} \left(P_{n-1} \right) \right)$ $= f_{n-1} \left(f_{n-1} \left(\frac{10}{3} \right) * f_{n-1} \left(P_{n-1} \right) - f_{n-1} \left(P_{n-2} \right) \right)$

Ironically, the computation was done by legacy software from the Ariane 4, and its results were not needed after lift-off.

Disasters due to rounding error http://www.ma.utexas.edu/users/arbogast/disasters.html

3. The Vancouver Stock Exchange.

THE PARTY

In 1982, the Vancouver Stock Exchange instituted a new index initialized to a value of 1000.000. The index was updated after each transaction. Twenty two months later it had fallen to 520. The cause was that the updated value was truncated rather than rounded. The rounded calculation gave a value of 1098.892.

Avoid substraction of two nearly equal numbers.
$fl(x) - fl(y) = 0.3141593 \times 10^{1} - 0.3141291 \times 10^{1} = 0.3020000 \times 10^{-3}$
~ lose 4 digits of significance
(Any further calculations can have only 3, instead of 7, digits of significance.)
• Avoid dividing by a small number.
original rounding error $= \delta$ exact number $= z = fl(z) + \delta$
divided by a small number $\varepsilon = 10^{-6}$
rounding error $= \left \frac{z}{\varepsilon} - \frac{fl(z)}{\varepsilon} \right = \left \frac{\delta}{\varepsilon} \right = 10^6 \left \delta \right $

Ways of Avoiding Rounding Errors:
• Reduce # of computations as many as possible.
$\pi + e = 3.141592653 + 2.71828182 = 5.85987448$
$\pi * e = 3.141592653*2.71828182 = 8.53973422$
7 digits + rounding method:
$fl(fl(\pi) + fl(e)) = fl(3.141593 + 2.718282) = 5.859875$
$fl(fl(\pi) * fl(e)) = fl(3.141593 * 2.718282)$
= fl(8.539735703) = 8.539736